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The study of a model of the lossy transmission line,
whose repeating elements are a series resistance and a
shunt capacitance, leads students to a surprising number of
ideas in physics. The author has used the system to intro-
duce students to analog simulation, and to the ideas of
Fourier synthesis, exponential decay, dispersion, and
phase shifts. The analysis of the system is well known, al-
though the specific method of analysis discussed in this
note seems not to have been published before.

I. THE MODEL

The outline presented here of the analysis of the general
transmission line is based on Bronwell’s treatment.! In
Fig. 1(a), the transmission line is represented by a series
resistance per unit length R; a series inductance per unit
length L; a leakage resistance per unit length 1/Y; and a
shunt capacitance per unit length C. The potential differ-
ence AV between the ends of a short segment of length Ax,
which carries current 7, is due to the /R drop along the
segment and the back emf,

Av=9Y px—IRAax+LAax .
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The change in the series current A/ between the two ends of
the segment is due to leakage and the charging of the shunt
capacitance,

Fig. 1. (a) One segment of the generalized model for the transmission line.
(b) The model for a transmission line having only series resistance and
shunt capacitance.
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A= Ax—vaxv+caxd¥,
ox ot

Canceling out the arbitrary segment length and using cross
differentiation to obtain a general wave equation for V
gives

v av av

=RYV+ (RC+ LYy —+ LC—-.
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We are interested in the case shown in Fig. 1(b), in
which the inductance and leakage effects are small. If the
terms with the coefficients ¥ and L are omitted, the work-
ing equation for the experiment is obtained,
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This is a wave equation, but the solutions will be seen to

display exponential decay as the wave travels down the
line, and also dispersion and phase shifts.

(1)

II. THE THERMAL ANALOG

The same form is also displayed by the diffusion equa-
tion, which is followed by several systems, particularly the
flow of heat down a semi-infinite bar wrapped in thermal
insulation. In this case, the dependent variable is the tem-
perature, which is a function of the time and the position
along the bar as follows:
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Here, X is the coefficient of thermal conductivity, C is the
specific heat capacity, and D is the density of the material;
the combination K /CD is often called the diffusivity.?

The isomorphism of Eqs. (1) and (2) is often used to
permit the thermal situation, which is hard to set up, to be
simulated by the electrical analog. A generalized treatment
has been given by Karplus.® Steere* has shown how to use
the analog to study heat flow in two-dimensional systems,
and Tomlin and Fullarton® have applied the transmission
line analogy to the study of one-dimensional heat flow
problems with long time constants.

III. THE EXPERIMENT

In the present experiment, the emphasis is placed on the
observation of the solutions to Eq. (2). The signal applied
to one end of the line is assumed to be sinusoidal with angu-
lar frequency w. It is reasonable to assume that the time
variation at points down the line will also have the same
form. The space dependence of the signal is assumed tobe a
decaying exponential, since there is a lossy series element R
present. Hence, the trial solution is
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Fig. 2. (a) Phase shift as a function of segment number for the lossy
transmission line. (b) Semilog plot of relative amplitude as a function of
segment number. Circles are for a 100-Hz sine wave, triangles for a 300-
Hz sine wave, and squares for a 500-Hz sine wave.

V="V,exp| j(wt — bx)] .

Putting this into Eq. (1) shows that the coefficient # must
be complex, and the proper solution is

V=V,exp( —JoRC/2x)exp| j(wt —JoRC/2x)] .
(3)

Here, x is the distance in units of segments down the trans-
mission line, measured from the driven end.

The first term in the solution indicates that the ampli-
tude of the signal is attenuated as it passes down the line,
while the second term describes the oscillatory nature of
the solution. The ratio of the amplitudes of the nth to the
(n — 1)thsegmentsise ~®, where @ = (#RC/2)"?, and it
can be seen that, at a given time, the signals at adjacent
segments differ in phase by an angle of & rad.

The system also displays the phenomenon of dispersion.
Equation (3) shows that the wavenumber is (wRC /2)"/2.
Thus the phase velocity is v = w/k = (20/RC)"'% in this
case, the higher frequency components of a complex peri-
odic wave would travel faster down the transmission line.

In a typical experiment, a 15-segment transmission line
was set up on a bread board, using 2.7-k{} resistors and
0.22-uF capacitors. Sinusoidal signals of frequencies 100,
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Table I. Values of § = (wRC /2) "2

Theory Attenuation Phase shift
f=100Hz 0.43 +0.02 0.433 +0.003  0.422 4+ 0.008
f=300Hz 0.75 + 0.04 0.752 +£ 0.007  0.703 + 0.004
f=500Hz 0.97 4+ 0.05 099 +0.01 1.08 +0.06

300, and 500 Hz were applied to the end of the line, and the
amplitude and phase shifts measured as far as possible
down the line. A dual-beam oscilloscope was used to ob-
serve the amplitude and phase shift of the signals at each
segment, relative to the input signal. The phase shifts were
measured (a) by observing the horizontal displacement of
the attenuated signal relative to the input signal when the
two traces were superimposed on the CRO screen, and (b)
by observing the shape of the Lissajous figures formed by
the input and attenuated signals.

Figure 2(a) shows typical data for phase shift as a func-
tion of segment number for the three frequencies and Fig.
2(b) is a semilog plot of the signal amplitude as a function
of segment number. For a given frequency, the absolute
values of the slopes of the two lines should be equal to the
quantity 8. Table I shows that within the limits of experi-
mental error this is true. The uncertainty in the slopes was
obtained from a least-squares curve-fitting program, and
the limiting factor in the theoretical value of § was assumed
to be the 10% uncertainty in the value of the capacitance.

This experiment is used in a course on oscillations and
waves for second semester sophomores. Fourier techniques
have already been discussed, so that the students know the
Fourier coefficients for a square wave (odd harmonics
only, with the coefficients inversely proportional to the
harmonic number). They are asked to apply a 100-Hz
square wave to the input of the transmission line, and ob-
serve the wave shape at various points down the line. The
shape of the wave degenerates for two reasons: The ampli-
tudes of the higher frequency components decay away
more rapidly, and these components undergo increasingly
larger phase shifts. Eventually, a point is reached where the
wave shape cannot be distinguished from a sinusoid. The
students are then asked to go back to the data in Fig. 2(b)
to see if the contributions of the third and fifth harmonics
have become small enough relative to the fundamental to
produce the sinusoidal wave shape.
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